3.325 \(\int \frac{1}{x^2 (a+b x^4+c x^8)} \, dx\)

Optimal. Leaf size=363 \[ -\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{\sqrt{b^2-4 a c}-b}}-\frac{1}{a x} \]

[Out]

-(1/(a*x)) - (c^(1/4)*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2
*2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - (c^(1/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b
 + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(1 - b/Sqrt[b^2 - 4*a*c]
)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) +
(c^(1/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*a*(
-b + Sqrt[b^2 - 4*a*c])^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.411679, antiderivative size = 363, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.278, Rules used = {1368, 1510, 298, 205, 208} \[ -\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} a \sqrt [4]{\sqrt{b^2-4 a c}-b}}-\frac{1}{a x} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a + b*x^4 + c*x^8)),x]

[Out]

-(1/(a*x)) - (c^(1/4)*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2
*2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - (c^(1/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b
 + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(1 - b/Sqrt[b^2 - 4*a*c]
)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) +
(c^(1/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*a*(
-b + Sqrt[b^2 - 4*a*c])^(1/4))

Rule 1368

Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a +
 b*x^n + c*x^(2*n))^(p + 1))/(a*d*(m + 1)), x] - Dist[1/(a*d^n*(m + 1)), Int[(d*x)^(m + n)*(b*(m + n*(p + 1) +
 1) + c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2
*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntegerQ[p]

Rule 1510

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Dist[e/
2 - (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2
, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^2 \left (a+b x^4+c x^8\right )} \, dx &=-\frac{1}{a x}+\frac{\int \frac{x^2 \left (-b-c x^4\right )}{a+b x^4+c x^8} \, dx}{a}\\ &=-\frac{1}{a x}-\frac{\left (c \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{x^2}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{2 a}-\frac{\left (c \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{x^2}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{2 a}\\ &=-\frac{1}{a x}+\frac{\left (\sqrt{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{2} a}-\frac{\left (\sqrt{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{2} a}+\frac{\left (\sqrt{c} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{2} a}-\frac{\left (\sqrt{c} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{2} a}\\ &=-\frac{1}{a x}-\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b-\sqrt{b^2-4 a c}}}-\frac{\sqrt [4]{c} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b+\sqrt{b^2-4 a c}}}+\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [4]{c} \left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} a \sqrt [4]{-b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [C]  time = 0.0382723, size = 71, normalized size = 0.2 \[ -\frac{\text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1}^4 c \log (x-\text{$\#$1})+b \log (x-\text{$\#$1})}{2 \text{$\#$1}^5 c+\text{$\#$1} b}\& \right ]}{4 a}-\frac{1}{a x} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(a + b*x^4 + c*x^8)),x]

[Out]

-(1/(a*x)) - RootSum[a + b*#1^4 + c*#1^8 & , (b*Log[x - #1] + c*Log[x - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ]/(4*a)

________________________________________________________________________________________

Maple [C]  time = 0.006, size = 63, normalized size = 0.2 \begin{align*} -{\frac{1}{4\,a}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{ \left ({{\it \_R}}^{6}c+{{\it \_R}}^{2}b \right ) \ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}}}-{\frac{1}{ax}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(c*x^8+b*x^4+a),x)

[Out]

-1/4/a*sum((_R^6*c+_R^2*b)/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))-1/a/x

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Fricas [B]  time = 6.4674, size = 10831, normalized size = 29.84 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

-1/4*(4*a*x*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b
^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^
13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*arctan(-1/2*((a^5*b^5 - 8*a^6*b^3*c + 16*a^7*b*c^2)*x*sqrt((b
^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^
13*c^3)) + (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3)*x - sqrt(1/2)*(b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*
a^3*c^3 + (a^5*b^5 - 8*a^6*b^3*c + 16*a^7*b*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*
c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt((2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*x^
2 - sqrt(1/2)*(b^9 - 10*a*b^7*c + 34*a^2*b^5*c^2 - 43*a^3*b^3*c^3 + 12*a^4*b*c^4 + (a^5*b^8 - 13*a^6*b^6*c + 6
0*a^7*b^4*c^2 - 112*a^8*b^2*c^3 + 64*a^9*c^4)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4
)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4
 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*
a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))/(b^4*c^3 - 3*a*b^2*c^4 +
a^2*c^5)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^
8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^1
3*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))/(b^4*c - 3*a*b^2*c^2 + a^2*c^3)) - 4*a*x*sqrt(sqrt(1/2)*sqrt(-
(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 -
 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c
+ 16*a^7*c^2)))*arctan(-1/2*(sqrt(1/2)*(b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 - (a^5*b^5 - 8*a^6*b^3*c
+ 16*a^7*b*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c +
48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c
+ 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48
*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt((2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5
)*x^2 - sqrt(1/2)*(b^9 - 10*a*b^7*c + 34*a^2*b^5*c^2 - 43*a^3*b^3*c^3 + 12*a^4*b*c^4 - (a^5*b^8 - 13*a^6*b^6*c
 + 60*a^7*b^4*c^2 - 112*a^8*b^2*c^3 + 64*a^9*c^4)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4
*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5
*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 -
 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))/(b^4*c^3 - 3*a*b^2*c^
4 + a^2*c^5)) + ((a^5*b^5 - 8*a^6*b^3*c + 16*a^7*b*c^2)*x*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c
^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)) - (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2
- 4*a^3*c^3)*x)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqr
t((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 6
4*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2))))/(b^4*c - 3*a*b^2*c^2 + a^2*c^3)) - a*x*sqrt(sqrt(1/2)*sq
rt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c
^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^
2*c + 16*a^7*c^2)))*log(1/2*sqrt(1/2)*(b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4
- 32*a^5*b*c^5 - (a^5*b^10 - 16*a^6*b^8*c + 98*a^7*b^6*c^2 - 280*a^8*b^4*c^3 + 352*a^9*b^2*c^4 - 128*a^10*c^5)
*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2
 - 64*a^13*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*s
qrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 -
 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6
*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4
*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)) + (b^4*c^4 - 3*a*b^2*c^5 + a^2*c^6
)*x) + a*x*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^
8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^1
3*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*log(-1/2*sqrt(1/2)*(b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2 - 138*a
^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 - (a^5*b^10 - 16*a^6*b^8*c + 98*a^7*b^6*c^2 - 280*a^8*b^4*c^3 + 35
2*a^9*b^2*c^4 - 128*a^10*c^5)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12
*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4
- 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a
^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt(-(b^5 - 5*a*b^3*c + 5
*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4
*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)) + (b^
4*c^4 - 3*a*b^2*c^5 + a^2*c^6)*x) - a*x*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6
*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4
*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*log(1/2*sqrt(1/2)*(b^11 - 13*a*b^
9*c + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 + (a^5*b^10 - 16*a^6*b^8*c + 98*a^7*b^
6*c^2 - 280*a^8*b^4*c^3 + 352*a^9*b^2*c^4 - 128*a^10*c^5)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c
^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3
*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3
 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2))
)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b
^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^
6*b^2*c + 16*a^7*c^2)) + (b^4*c^4 - 3*a*b^2*c^5 + a^2*c^6)*x) + a*x*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*
a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*
c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*log(-
1/2*sqrt(1/2)*(b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 + (a^5*b^
10 - 16*a^6*b^8*c + 98*a^7*b^6*c^2 - 280*a^8*b^4*c^3 + 352*a^9*b^2*c^4 - 128*a^10*c^5)*sqrt((b^8 - 6*a*b^6*c +
 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(s
qrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 1
1*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4
 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqr
t((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 6
4*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)) + (b^4*c^4 - 3*a*b^2*c^5 + a^2*c^6)*x) + 4)/(a*x)

________________________________________________________________________________________

Sympy [A]  time = 16.9495, size = 304, normalized size = 0.84 \begin{align*} \operatorname{RootSum}{\left (t^{8} \left (16777216 a^{9} c^{4} - 16777216 a^{8} b^{2} c^{3} + 6291456 a^{7} b^{4} c^{2} - 1048576 a^{6} b^{6} c + 65536 a^{5} b^{8}\right ) + t^{4} \left (20480 a^{4} b c^{4} - 30720 a^{3} b^{3} c^{3} + 15616 a^{2} b^{5} c^{2} - 3328 a b^{7} c + 256 b^{9}\right ) + c^{5}, \left ( t \mapsto t \log{\left (x + \frac{- 2097152 t^{7} a^{10} c^{5} + 5767168 t^{7} a^{9} b^{2} c^{4} - 4587520 t^{7} a^{8} b^{4} c^{3} + 1605632 t^{7} a^{7} b^{6} c^{2} - 262144 t^{7} a^{6} b^{8} c + 16384 t^{7} a^{5} b^{10} - 2304 t^{3} a^{5} b c^{5} + 8256 t^{3} a^{4} b^{3} c^{4} - 8832 t^{3} a^{3} b^{5} c^{3} + 4032 t^{3} a^{2} b^{7} c^{2} - 832 t^{3} a b^{9} c + 64 t^{3} b^{11}}{a^{2} c^{6} - 3 a b^{2} c^{5} + b^{4} c^{4}} \right )} \right )\right )} - \frac{1}{a x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**8*(16777216*a**9*c**4 - 16777216*a**8*b**2*c**3 + 6291456*a**7*b**4*c**2 - 1048576*a**6*b**6*c + 6
5536*a**5*b**8) + _t**4*(20480*a**4*b*c**4 - 30720*a**3*b**3*c**3 + 15616*a**2*b**5*c**2 - 3328*a*b**7*c + 256
*b**9) + c**5, Lambda(_t, _t*log(x + (-2097152*_t**7*a**10*c**5 + 5767168*_t**7*a**9*b**2*c**4 - 4587520*_t**7
*a**8*b**4*c**3 + 1605632*_t**7*a**7*b**6*c**2 - 262144*_t**7*a**6*b**8*c + 16384*_t**7*a**5*b**10 - 2304*_t**
3*a**5*b*c**5 + 8256*_t**3*a**4*b**3*c**4 - 8832*_t**3*a**3*b**5*c**3 + 4032*_t**3*a**2*b**7*c**2 - 832*_t**3*
a*b**9*c + 64*_t**3*b**11)/(a**2*c**6 - 3*a*b**2*c**5 + b**4*c**4)))) - 1/(a*x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{8} + b x^{4} + a\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

integrate(1/((c*x^8 + b*x^4 + a)*x^2), x)